增材制造技术是“先进制造”的重要发展方向,也是最具代表性的“智能制造”技术之一。微纳增材制造是将材料打印直接成具有微米级到纳米级精度的微纳结构器件,赋予其在微纳尺度上操控、传感、输运等功能。与传统的光刻微纳制造技术相比,微纳增材制造不需要掩模版,在个性化订制、复杂3D结构构建等方面具有显著优势,在设计与制备新型微纳功能器件领域有巨大的发展潜力,是近年来的研究热点。
戴晓老师及其合作者基于类“美拉德反应”机制,发展了一种新型热敏聚合物体系,并利用激光打印前驱体和退火处理,实现了打印金属氧化物、金属氮化物、金属硫化物、以及多元金属化合物等无机非金属功能材料。这一新路线大力拓展了可打印材料的种类与范围,能够为无极功能材料微纳器件增材制造的发展提供新的平台。相关成果近期发表在Science China Chemistry上。
题目:Maillard reaction-derived laser lithography for printing functional inorganics
作者:Xiao Dai1, 2†, Yining Jiang1†, Xiaohan Wang3, Fengnan Chen1, Liang Gao1, Xiaofeng Li1, and Guifu Zou1*
单位:
1 School of Energy, School of Optoelectronic Science and Engineering & Key Laboratory of Advanced Carbon Materials and Wearable Energy Technologies of Jiangsu Province, Soochow University, Suzhou 215006, China.
2 School of Optical and Electronic Information, Suzhou City University, Suzhou 215104, China.
3 Research Institute of Superconductor Electronics, College of Engineering and Applied Science, Nanjing University, Nanjing 210023, China.
摘要:Photopolymerization-based additive printing of functional inorganics has drawn great attention in recent years and one important challenge is the photoresin loading with diverse inorganics. Here, we introduce a Maillard reaction-derived laser lithography strategy for an unprecedented direct printing of diverse inorganic compounds. The sugar-assisted laser lithography (SLL) is powerful to carry choice metal ions and versatile for the generation of patterned inorganic materials comprising metal oxides, metal sulfides, and metal nitrides, characterized by ferroelectric, magnetic, semiconductivity, superconductivity, or other properties. The material architecture is flexibly manipulated by the laser intensity, power, printing speed, precursor solution, and computer-aided design to satisfy the practical requirements. This work demonstrates a new possibility for the further development of laser lithography in the directly printing of feature-rich inorganic materials and devices.
影响因子:9.445
链接:https://link.springer.com/article/10.1007/s11426-022-1230-x